RIT

Introduction

Standard ML (SML) uses garbage collection to
ensure safety, abstracting away manual memory
management at the expense of low-level control.

Problem: Heavy heap allocation of temporary values
triggers frequent, unpredictable “stop-the-world” GC
pauses.

Existing Solutions: Escape analysis or ownership
models are either invisible to the programmer or
introduce significant complexity.

Goal: Give SML programmers explicit, type-safe
control to safely stack allocate data, reducing GC
pressure, while ensuring memory safety and
backwards compatibility.

Modal Allocation
]

We extend SML to support the ability for
programmers to allocate short-lived values on the
stack. To enable this, we introduce a modal type
system, which associates value bindings with modes
describing where they may live.

Modes express where values live:

® stack: lives in the current function’s stack frame
(lexical lifetime).

®* heap: lives on the GC-managed heap (may outlive
the defining function.

® constant: immediate values/literals that require no
allocation,

* undetermined: initial mode for unannotated bindings
during inference.

No-escape Invariant:

If a value is annotated or inferred to be stack, that
value may not escape it’s defining function.

In particular, a stack value cannot be: stored in the
heap, returned from the defining function, or stored in
a longer-lived stack frame.

e —

Safe Stack Allocation in Standard ML

Thomas Schollenberger (tss2344@cs.rit.edu)
Advisor: Dr. Matthew Fluet

'Example Code

fun map_exclave f [| =[]
| map_exclave f (X :: xs) =
exclave_ (f x :- stack_)
- (map_exclave f xs :- stack_)

fun tabulate_exclave n f =
ifn <=0 then []
else
exclave_
(f n :- stack_) :: tabulate_exclave (n- 1) f

val list1 :- stack_ = List.tabulate_exclave n (fn X => x)
val list? :- stack_ = List.map_exclave (fn x => x * 2) list
val sum = List.foldl op+ O list2

We implement a region-based memory model
to handle allocating temporaries efficiently while
preserving stack-like reclamation.

Region runtime mechanics:

* Region stack: Functions that may hold stack-
allocated values are associated with a region.
Entering such a function pushes a new region;
returning pops it.

* Reclamation: Popping a region reclaims all of
its stack-allocated values in constant time O(7)
by resetting an allocation pointer.

The exclave primitive:

®* exclave e: evaluates e such that allocations
performed by e occur in the caller's region
instead of the current frame’s region.

* Safety: The type-and-mode system ensures
that e does not capture stack values from the
current (soon-to-be-popped) frame; all captured
values must be valid for the caller’s region.

4MB Buffer Boundary (End)

Unused Space

Current Region Payload
(Mew allocations go here)

Last Region Ptr

Previous Region Payload

Previous Last Region Ptr

4MB Buffer Start (Start)

FUNCTIONS

FN: tabulate_exclave

n: int
f: heap closure
ret_ptr: e

FN: map_exclave

f: heap closure
Xs. e
ret_ptr:. e .

FN: main

LOCAL REGIONS
(Short Term Data)

REGION: main (Active)

regionTop
(Current Allocation Pointer) - gimple list operations to simulate a hot path with high

regionBase
(Start of Current Region)

FPointing to previous regionBase

listl: e

list2:. e
sum. int_\

-« — 2N

>

s

Computer

Results

We implement evaluate our modal allocation system
on a synthetic allocation-heavy workload. The
benchmark repeatedly constructs lists and performs

allocation pressure.

1 I

Iterations Baseline Runtime En:;?:: Ign::t?me
T T T |
1,000 27 ms 17 ms
- N T 4
5,000 702 ms 404 ms
—— I - ﬁ
10,000 2,939 ms 1,619 ms
——— . - ﬁ
50,000 77,681 ms 41,826 ms
N —— S S —— S —— |

284,801 ms

| |

| \

These results show a consistent speedup of
approximately 30%. This result is consistent with
expectations. SML programs spend roughly 30% of
execution time in garbage collection on this workload.

Future Work & Conclusion
T
* Validation: Apply modal stack allocation to larger

SML projects, comparing against escape analysis
and purely GC-based allocation..

®* Array Primitive Extensions: Support modal
allocation for the built-in array primitive.
®* Feasibility: Extending SML to support stack

allocation via modes and regions is feasible without
breaking backwards compatibility.

®* The middle ground: Modal memory management
offers a balance between pure GC and fully manual
memory control.

mailto:tss2344@cs.rit.edu

	Slide 1

