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Introduction

Standard ML (SML) uses garbage collection to
ensure safety, abstracting away manual memory
management at the expense of low-level control.

Problem: Heavy heap allocation of temporary values
triggers frequent, unpredictable “stop-the-world” GC
pauses.

Existing Solutions: Escape analysis or ownership
models are either invisible to the programmer or
introduce significant complexity.

Goal: Give SML programmers explicit, type-safe
control to safely stack allocate data, reducing GC
pressure, while ensuring memory safety and
backwards compatibility.

Modal Allocation
]

We extend SML to support the ability for
programmers to allocate short-lived values on the
stack. To enable this, we introduce a modal type
system, which associates value bindings with modes
describing where they may live.

Modes express where values live:

® stack: lives in the current function’s stack frame
(lexical lifetime).

®* heap: lives on the GC-managed heap (may outlive
the defining function.

® constant: immediate values/literals that require no
allocation,

* undetermined: initial mode for unannotated bindings
during inference.

No-escape Invariant:

If a value is annotated or inferred to be stack, that
value may not escape it’s defining function.

In particular, a stack value cannot be: stored in the
heap, returned from the defining function, or stored in
a longer-lived stack frame.
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'Example Code

fun map_exclave f [| =[]
| map_exclave f (X :: xs) =
exclave_ (f x :- stack_)
- (map_exclave f xs :- stack_)

fun tabulate_exclave n f =
ifn <=0 then []
else
exclave_
(f n :- stack_) :: tabulate_exclave (n- 1) f

val list1 :- stack_ = List.tabulate_exclave n (fn X => x)
val list? :- stack_ = List.map_exclave (fn x => x * 2) list
val sum = List.foldl op+ O list2

We implement a region-based memory model
to handle allocating temporaries efficiently while
preserving stack-like reclamation.

Region runtime mechanics:

* Region stack: Functions that may hold stack-
allocated values are associated with a region.
Entering such a function pushes a new region;
returning pops it.

* Reclamation: Popping a region reclaims all of
its stack-allocated values in constant time O(7)
by resetting an allocation pointer.

The exclave primitive:

®* exclave e: evaluates e such that allocations
performed by e occur in the caller's region
instead of the current frame’s region.

* Safety: The type-and-mode system ensures
that e does not capture stack values from the
current (soon-to-be-popped) frame; all captured
values must be valid for the caller’s region.
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FUNCTIONS

FN: tabulate_exclave

n: int
f: heap closure
ret_ptr: e

FN: map_exclave

f: heap closure
Xs. e
ret_ptr:. e .

FN: main
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Results

We implement evaluate our modal allocation system
on a synthetic allocation-heavy workload. The
benchmark repeatedly constructs lists and performs

allocation pressure.
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These results show a consistent speedup of
approximately 30%. This result is consistent with
expectations. SML programs spend roughly 30% of
execution time in garbage collection on this workload.

Future Work & Conclusion
T
* Validation: Apply modal stack allocation to larger

SML projects, comparing against escape analysis
and purely GC-based allocation..

®* Array Primitive Extensions: Support modal
allocation for the built-in array primitive.
®* Feasibility: Extending SML to support stack

allocation via modes and regions is feasible without
breaking backwards compatibility.

®* The middle ground: Modal memory management
offers a balance between pure GC and fully manual
memory control.
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