
Safe Stack Allocation in Standard ML
Thomas Schollenberger (tss2344@cs.rit.edu)

Standard ML (SML) uses garbage collection to 
ensure safety, abstracting away manual memory 
management at the expense of low-level control.

Problem: Heavy heap allocation of temporary values 
triggers frequent, unpredictable “stop-the-world” GC 
pauses.

Existing Solutions: Escape analysis or ownership 
models are either invisible to the programmer or 
introduce significant complexity.

Goal: Give SML programmers explicit, type-safe 
control to safely stack allocate data, reducing GC 
pressure, while ensuring memory safety and 
backwards compatibility. 

Advisor: Dr. Matthew Fluet

Results

Modal Allocation

Introduction

Future Work & Conclusion

We extend SML to support the ability for 
programmers to allocate short-lived values on the 
stack. To enable this, we introduce a modal type 
system, which associates value bindings with modes 
describing where they may live.

Modes express where values live:

 stack: lives in the current function’s stack frame 
(lexical lifetime).

 heap: lives on the GC-managed heap (may outlive 
the defining function.

 constant: immediate values/literals that require no 
allocation,

 undetermined: initial mode for unannotated bindings 
during inference.

No-escape Invariant:

If a value is annotated or inferred to be stack, that 
value may not escape it’s defining function.

In particular, a stack value cannot be: stored in the 
heap, returned from the defining function, or stored in 
a longer-lived stack frame.

fun map_exclave f [] = []
  | map_exclave f (x :: xs) =
      exclave_ (f x :- stack_) 
          :: (map_exclave f xs :- stack_)

fun tabulate_exclave n f =
  if n <= 0 then []
  else
    exclave_ 
        (f n :- stack_) :: tabulate_exclave (n - 1) f

val list1 :- stack_ = List.tabulate_exclave n (fn x => x)
val list2 :- stack_ = List.map_exclave (fn x => x * 2) list
val sum = List.foldl op+ 0 list2

Example Code

We implement a region-based memory model 
to handle allocating temporaries efficiently while 
preserving stack-like reclamation.

Region runtime mechanics:

 Region stack: Functions that may hold stack-
allocated values are associated with a region. 
Entering such a function pushes a new region; 
returning pops it.

 Reclamation: Popping a region reclaims all of 
its stack-allocated values in constant time O(1) 
by resetting an allocation pointer.

The exclave primitive:

 exclave e: evaluates e such that allocations 
performed by e occur in the caller’s region 
instead of the current frame’s region.

 Safety: The type-and-mode system ensures 
that e does not capture stack values from the 
current (soon-to-be-popped) frame; all captured 
values must be valid for the caller’s region.

Iterations Baseline Runtime
Stack Mode 

Enabled Runtime

1,000 27 ms 17 ms

5,000 702 ms 404 ms

10,000 2,939 ms 1,619 ms

50,000 77,681 ms 41,826 ms

100,000  284,801 ms 146,985 ms

We implement evaluate our modal allocation system 
on a synthetic allocation-heavy workload. The 
benchmark repeatedly constructs lists and performs 
simple list operations to simulate a hot path with high 
allocation pressure.

These results show a consistent speedup of 
approximately 30%. This result is consistent with 
expectations. SML programs spend roughly 30% of 
execution time in garbage collection on this workload.

 Validation: Apply modal stack allocation to larger 
SML projects, comparing against escape analysis 
and purely GC-based allocation..

 Array Primitive Extensions: Support modal 
allocation for the built-in array primitive.

 Feasibility: Extending SML to support stack 
allocation via modes and regions is feasible without 
breaking backwards compatibility.

 The middle ground: Modal memory management 
offers a balance between pure GC and fully manual 
memory control.

mailto:tss2344@cs.rit.edu

	Slide 1

